Liczby naturalne i ułamki Figury na płaszczyźnie. Kalendarz, czas, skala, jednostki Zaokrąglanie liczb na osi liczbowej; Quiz mistrza czasu; Prędkość
bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Przedstaw liczbę \(\displaystyle{ 0,2(6)}\) w postaci ułamka zwykłego. Problem stwarza mi cyfra \(\displaystyle{ 2}\) przed tą \(\displaystyle{ 6}\) w okresie. Jak powinienem postępować, aby otrzymać wynik? Próbowałem póki co zapisać w postaci \(\displaystyle{ 0,2666... = x}\) i teraz zaczyna się kłopot, gdyż gdyby nie było tej \(\displaystyle{ 2}\), to bym wymnożył obustronnie przez \(\displaystyle{ 10}\) i bym otrzymał prawidłowy wynik, a tak jak mówiłem mam problem z tą \(\displaystyle{ 2}\). Lbubsazob Użytkownik Posty: 4672 Rejestracja: 17 maja 2009, o 13:40 Płeć: Kobieta Lokalizacja: Gdańsk Podziękował: 124 razy Pomógł: 978 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: Lbubsazob » 3 paź 2011, o 17:57 Tu masz podobny przykład, tylko że liczba \(\displaystyle{ 2,3(4)}\): mat_61 Użytkownik Posty: 4615 Rejestracja: 8 lis 2009, o 10:22 Płeć: Mężczyzna Lokalizacja: Racibórz Pomógł: 866 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: mat_61 » 3 paź 2011, o 17:59 Wskazówka: pomnóż przez 10 oraz 100: \(\displaystyle{ \begin{cases} 2,(6)=10x \\ 26,(6)=100x \end{cases}}\) ares41 Użytkownik Posty: 6499 Rejestracja: 19 sie 2010, o 08:07 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 142 razy Pomógł: 922 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: ares41 » 3 paź 2011, o 18:01 A nie prościej po prostu: bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 18:08 Lbubsazob pisze:Tu masz podobny przykład, tylko że liczba \(\displaystyle{ 2,3(4)}\): Dziękuję, wyszło. Tylko mam jeszcze jedno pytanie, możesz wytłumaczyć tą linijkę? \(\displaystyle{ \frac{31}{9}=10x \\ x= \frac{31}{90}}\) Co się tu stało, że jedynie mianownik się wymnożył? anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 18:10 Podzielono obie strony przez \(\displaystyle{ 10}\) bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 20:38 Żeby nie zaczynać nowego tematu: przy kolejnym zadaniu mam problem. Zatem, muszę wyznaczyć wszystkie pary liczb całkowitych \(\displaystyle{ x}\) i \(\displaystyle{ y}\), spełniających równanie: \(\displaystyle{ xy - y + x + 1 = 0}\) Dotychczas moje zapiski wyglądają następująco: \(\displaystyle{ x(y+1)(y-1)=0\\(y+1)(x-1)=0}\) lecz jest to błędne, gdyż równania \(\displaystyle{ (y+1)}\) i \(\displaystyle{ (x-1)}\) po podstawieniu niewiadomych nie dają takich wyników jak w odpowiedzi do zadania. Proszę o wskazanie i wytłumaczenie mi błędu. anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 20:59 Nie powinno być czasem: \(\displaystyle{ xy - y + x - 1 = 0}\) bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 21:01 Nie, dokładnie taki przykład jak podałem mam podane w zbiorze zadań. bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 21:09 \(\displaystyle{ \begin{cases} x=2\\y=-3\end{cases}}\) \(\displaystyle{ \vee}\) \(\displaystyle{ \begin{cases} x=0\\y=1\end{cases}}\) \(\displaystyle{ \vee}\) \(\displaystyle{ \begin{cases} x=3\\y=-2\end{cases}}\) \(\displaystyle{ \vee}\) \(\displaystyle{ \begin{cases} x=-1\\y=0\end{cases}}\) Wskazówka: Odejmij od obu stron równania \(\displaystyle{ 2}\) i rozłóż lewą stronę na czynniki. anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 21:13 \(\displaystyle{ xy - y + x + 1 = 0}\) \(\displaystyle{ xy - y + x + 1 -2= -2}\) \(\displaystyle{ xy - y + x -1= -2}\) \(\displaystyle{ (x - 1)(y + 1)=-2}\) Mogą zajść przypadki \(\displaystyle{ \begin{cases} x - 1=-1 \\ y + 1=2 \end{cases}}\) \(\displaystyle{ \begin{cases} x - 1=1 \\ y + 1=-2 \end{cases}}\) \(\displaystyle{ \begin{cases} x - 1=-2 \\ y + 1=1 \end{cases}}\) \(\displaystyle{ \begin{cases} x - 1=2 \\ y + 1=-1 \end{cases}}\) bastun Użytkownik Posty: 53 Rejestracja: 7 maja 2007, o 14:49 Płeć: Mężczyzna Lokalizacja: Suwałki Podziękował: 22 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: bastun » 3 paź 2011, o 21:14 A co z wynikami podanymi w odpowiedzi? anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Rozwinięcie dziesiętne nieskończone okresowe. Post autor: anna_ » 3 paź 2011, o 21:15 Rozwiąż te układy, które podałam i będzie to co w odpowiedzi. \(\displaystyle{ -2=-1 \cdot 2}\) \(\displaystyle{ -2= 1\cdot (-2)}\) \(\displaystyle{ -2= -2\cdot 1}\) \(\displaystyle{ -2= 2\cdot (-1)}\) stąd tamte układy
Przykładami liczb, które mają rozwinięcia dziesiętne nieskończone nieokresowe, są: π = 3,14 2,30300300030000300000 …. 0,123456789101112131415 ….. Przykładami liczb niewymiernych są pierwiastki kwadratowe z liczb dodatnich, które nie są kwadratami liczb wymiernych i pierwiastki sześcienne z liczb, które nie są sześcianami
Karty Karta Liczby wymierne, układanka Karta Liczby wymierne, układanka Karta Liczby wymierne, gra 1 Karta Liczby wymierne, gra 2 Karta Liczby wymierne, gra 3 Karta Liczby wymierne, ułamki Karta Liczby wymierne, działania Karta B; Liczby wymierne, obliczamy w pamięci Filmy Liczby wymierne. Cykl filmów dotyczący liczb wymiernych zawiera 6 odcinków. Rozpoczynamy od pokazania, że nie wszystkie ułamki zwykłe są liczbami dziesiętnymi, tzn. o skończonym rozwinięciu dziesiętnym, ale że istnieją ułamki które mają rozwinięcia nieskończone okresowe. Pokazujemy, co to jest okresowość, jaka jest długość okresu i wyjaśniamy dlaczego. Cykl kończymy przedstawieniem własności, że pomiędzy każde dwie liczby wymierne na osi można wstawić nieskończenie wiele innych liczb. Na stronach Fundacji, w zadaniach dla gimnazjum oraz kartach pracy można znaleźć sporo przykładów do wykorzystania: np. karta nr. testy, zad. gimnazjalne nr 23 i 24. Odcinek 1. Rozwinięcia dziesiętne nieskończone Prezentujemy rozwiniecie dziesiętne ułamka 1/3 oraz ułamków o mianowniku dlaczego te ułamki nie mają rozwinięcia skończonego, tylko okresowe. Uczniowie mogą bawić się kalkulatorem, szukając rozwinięć dla różnych ułamków. Dobrze też jest zadać pytanie, czy mogą podać przykłady innych ułamków z rozwinięciem okresowym z powtarzającą się tylko jedną cyfrą. Odcinek 2. Rozwinięcia dziesiętne okresowe. Podajemy przykłady ułamków z rozwinięciem okresowym, , które mają początkowe cyfry inne niż w okresie – np. 1/6. Pokazujemy, że jest to suma ułamka dziesiętnego i ułamka okresowego. Dobrze byłoby, gdyby uczniowie podawali własne przykłady i powtórzyli pokazaną drogę od ułamka okresowego do ułamka zwykłego. Odcinek 3. Rozwinięcia okresowe, przybliżenia. Wyjaśniamy, jakie ułamki zwykłe mają rozwinięcia dziesiętne skończone, a jakie okresowe. Pokazujemy ułamki z okresem różnej długości i pokazujemy, że działania na nich wykonujemy biorąc przybliżenia. Najlepiej jest, jeśli uczniowie cały czas mają kalkulatory, na których mogą szukać rozwinięć dla różnych ułamków i wybierać do działań dowolne przybliżenia Odcinek 4. Ułamki o mianowniku 7 Na przykładzie ułamków o mianowniku 7 wyjaśniamy jaka jest maksymalna długość okresu. Pokazujemy własności tych ułamków (cykliczność okresu). Można prosić uczniów, aby narysowali okrąg, rozmieścili na nim równo cyfry kresu i na takim modelu zobaczyli okresowość rozwinięcia tych ułamków. Uczniom bardziej zainteresowanym , można podpowiedzieć, aby spróbowali znaleźć rozwinięcie ułamków o mianowniku 13 i/ lub 17. ( nie jest to łatwe zadanie) Odcinek 5. Od rozwinięcia okresowego do ułamka zwykłego. Pokazujemy, jak, mając rozwinięcie ułamka okresowego o dowolnie długim okresie znaleźć odpowiadający ułamek zwykły. Uczniowie powinni powtórzyć podane rozumowanie na własnych przykładach. Odcinek 6. Liczby wymierne na osi. Umieszczamy liczby wymierne na osi i wyjaśniamy jedną z ważniejszych własności liczb wymiernych- miedzy dwie dowolne liczby wymierne można wstawić nieskończenie wiele innych liczb wymiernych. Na tym etapie dobra byłaby dyskusja między uczniami, jak rozumieją tę własność.
dzielenia licznika przez metodą dzielenia dziesiętne ułamka zwykłego (P-R) związane z rozwinięciami dziesiętnymi zwykłych. mianownik (P) licznika przez •określić kolejną cyfrę rozwinięcia ułamków zwykłych (D-W) • pojęcie rozwinięcia mianownik (P) dziesiętnego na podstawie jego skróconego dziesiętnego zapisu (P-R)
Zadanie 4 (0-1) Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Zaokrąglenie ułamka okresowego 9,2(6) z dokładnością do 0,001 jest równe A. 9,262 B. 9,263 C. 9,266 D. 9,267 Czytaj dalej"Egzamin gimnazjalny z matematyki 2017 - zadanie 4"
2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 5. Mnożenie i dzielenie liczb dodatnich 6. Wyrażenia arytmetyczne 7. Działania na liczbach dodatnich i ujemnych. 8. Oś liczbowa. Odległość liczb na osi liczbowej. 2. PROCENTY 1. Procenty i ułamki 2
kylek2089 Użytkownik Posty: 22 Rejestracja: 8 paź 2007, o 21:50 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 5 razy Rozwinięcie dziesiętne okresowe mamy daną liczbe \(\displaystyle{ a = \frac{5}{7}}\) i \(\displaystyle{ b = \frac{7}{11}}\) Czy liczba \(\displaystyle{ a^{7} + b^{7}}\) ma rozwinięcie dziesiętne okresowe ?? Moje uzasadnienie to oczywiście to że zarówna liczba a jak i liczba b są wymierne, a wiadomo że liczby wymierne mają rozwinięcie dziesietne albo skończone albo okresowe. Tylko jak uzasadnić że rozwinięcie jest OKRESOWE a nie SKOŃCZONE. bosz Użytkownik Posty: 115 Rejestracja: 22 sty 2008, o 19:35 Płeć: Mężczyzna Lokalizacja: Edinburgh Pomógł: 14 razy Rozwinięcie dziesiętne okresowe Post autor: bosz » 26 sty 2008, o 12:51 aby liczba wymierna miala rozwiniecie skonczone mianownik musi byc iloczynem \(\displaystyle{ 2^n * 5^m}\) Twoja suma moglaby miec taki mianownik tylko wtedy, gdyby byla liczba calkowita (\(\displaystyle{ 2^0 * 5^0)}\)
Podaj przykład trzech liczb wymiernych x,y,z takich, że: 3 11 < x < y < z < 4 11 Zamieniamy granice tak, by liczniki różniły się o przynajmniej 4 (gdyż chcemy zmieścić tam trzy liczby całkowite). 12 44 < x < y < z < 16 44 Przykładem liczb spełniających nierówność będą x = 13 44, y = 14 44 = 7 22, z = 15 44. Tomasz Lechowski
W skrócie Zyskaj dostęp do setek lekcji przygotowanych przez ekspertów! Wszystkie lekcje, fiszki, quizy, filmy i animacje są dostępne po zakupieniu subskrypcji. W tej lekcji: liczby wymierne – definicja i przykładyrozwinięcie dziesiętne liczby wymiernejzamiana ułamka okresowego na ułamek zwykły Miesięczny dostęp do wszystkich przedmiotów Dostęp do 9 przedmiotów Płatność co miesiąc Zrezygnuj kiedy chcesz! 19,90Płatne co miesiąc Zrezygnuj w dowolnym momencie Kontynuuj RABAT 15% Roczny dostęp do wszystkich przedmiotów Dostęp do 9 przedmiotów Korzystny rabat Jednorazowa płatność Korzystasz bez ograniczeń przez cały rok! 84,15 7,01 zł / miesiąc Jednorazowa płatność Kontynuuj lub kup dostęp przedmiotowy Dostęp do 1 przedmiotu na rok Nie lubisz kupować kota w worku? Sprawdź, jak wyglądają lekcje na Dla Ucznia Sprawdź się Filmy do tego tematu Materiały dodatkowe
- ቨ фոкωгαጄጩлե
- Срапиσո уζ октуγፋժ
- Лавр аχωв круտጇգуж ካ
- Ը ኃըх кሮмուфաβ
- Лո изуκላло опаχ
- Ив увዡκ դቪтоτу
Klasa 7 1.2 Rozwinięcia dziesiętne liczb wymiernych. Potrzebuję na jutro daje naj. Proszę o zrobienie pisemnie. Zad. 1 znajdź rozwinięcia dziesiętne podanych ułamków. a)5/8=5:8=? b) 3/11=3:11=? Zad. 2 korzystając z rozwinięć dziesiętnych otrzymanych w zadaniu 1., znajdź rozwinięcia dziesiętne podanych liczb mieszanych.
Zamiana ułamków zwykłych na dziesiętne. Żeby zamienić ułamek zwykły na dziesiętny, dzielimy licznik przez mianownik. Jeśli mamy liczbę mieszaną, to część całkowitą przepisujemy przed przecinkiem. Podzielimy 7 przez 8 , a liczbę 3 przepiszemy przed przecinkiem. Czy chcesz się dowiedzieć więcej o zamianie ułamków zwykłych
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ 1.2 Rozwinięcia dziesiętne liczb wymiernych 1. Znajdź rozwinięcia dziesiętne podanych ułamków. a) § = 5:8=? …
4) zaokrągla rozwinięcia dziesiętne liczb; 5) oblicza wartości nieskomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i dziesiętne; 6) szacuje wartości wyrażeń arytmetycznych; 7) stosuje obliczenia na liczbach wymiernych do rozwiązywania problemów w kontekście praktycznym, w tym do zamiany jednostek (jednostek
IMg7FCF. b2u01wsfph.pages.dev/75b2u01wsfph.pages.dev/33b2u01wsfph.pages.dev/89b2u01wsfph.pages.dev/31b2u01wsfph.pages.dev/24b2u01wsfph.pages.dev/64b2u01wsfph.pages.dev/70b2u01wsfph.pages.dev/92
rozwinięcia dziesiętne liczb wymiernych ułamki okresowe